Семёныч шарит

Cтекловолокно: виды, применение, характеристики, свойства, тепло проводимость, фото, видео

 

Стекловолокно – это распространенный материал на основе кварцевого песка. Он используется для изготовления стройматериалов, а также различных высокотехнологичных и прочных легких конструкций.

Из чего делают стекловолокно

Впервые стекольное волокно получились случайно. На производстве стекла произошла авария, при которой расплавленная масса была раздута подаваемым под давлением воздухом. В результате получились нити, отличающиеся некой долей гибкости. Это стало неожиданностью, поскольку толстое стекло после застывания является очень твердым. С тех пор прошло уже более 150 лет. Технология немного изменилась, но принцип остался прежним.

Для производства стекловолокна применяется кварцевый песок или битое стекло. Применяемая технология не подразумевает использования сложного оборудования, она является довольно простой. При этом получаемый материал обладает рядом свойств, зависящих от способа подготовки волокна.

Процесс изготовления стекловолокна заключается в выдувании из него тонких ниток. Для этого осуществляется разогрев битого стекла или кварцевого песка до температуры 1400°С. Расплавленная тягучая масса подается на формирующее оборудование. Если ее пропустить через центрифугу, то получится стекловата с переплетенными, замешанными между собой волокнами. Если же применять специальное сито с микроотверстиями, через которые масса выдувается под давлением пара, то получаются ровные длинные волокна. В дальнейшем они могут использоваться как сырье для изготовления сложных изделий.

 

Технические особенности

Стекловолокно имеет целый ряд положительных качеств, делающих его отличным сырьем для изготовления строительных материалов. К его неоспоримым достоинствам можно отнести:
  • Теплопроводность.
  • Устойчивый химический состав.
  • Высокую плотность.
  • Повышенную температуру плавления.
  • Устойчивость к горению.

Одним из самых важных достоинств стекловолокна является низкая теплопроводность. Это позволяет делать из данного сырья теплоизоляционные материалы. Из всей группы изделий, которые можно получить из данного сырья, самым лучшим теплоизолятором является стекловата.

Стекловолокно имеет высокую химическую устойчивость, поскольку практически полностью состоит из кварцевого песка. При воздействии на него щелочами отсутствует любая химическая реакция, что делает волокно практически универсальным для сочетания с любыми стройматериалами.

Нити имеют высокую плотность, которая составляет 2500 кг/м³. Однако благодаря тому, что они являются распушенными, готовые из них изделия имеют большой объем, при этом малый вес. Чтобы расплавить даже тонкие волокна, их необходимо разогреть до температуры как минимум 1200°С. Такое возможно только при целенаправленном воздействии горелки. Это негорючий материал, что позволяет его использовать для создания различных пожаробезопасных конструкций. Теоретически возможно воссоздание определенных условий, при которых отдельные сорта стекловолокна могут гореть. При этом они должны содержать связующие полимерные компоненты, что встречается редко.

Свойства и характеристики

Использование стекловолокна в промышленности и строительстве обусловлено его отличными техническими характеристиками и свойствами. Именно они и привели к высокой популярности этого материала.

Ниже мы рассмотрим основной перечень технических характеристик и потребительских качеств изделий из стеклянных волокон:

Теплопроводность

Стекло само по себе имеет очень низкую теплопроводность, поэтому изделия из него обладают отличными теплоизоляционными свойства.

Самым низким коэффициентом среди всех изделий из стекловолокна обладает стекловата. Для этой продукции он составляет 0,05 Вт/м*К, что и определяет сферы ее использования.

Стекловата применяется для термоизоляции различных строительных конструкций, трубопроводов, промышленных объектов и т. д.

Химический состав

Эта характеристика зависит от состава исходного сырья. В любом неорганическом стекле основным компонентом является кварцевый песок, поэтому содержание SiO2 в стеклянных нитях варьируется от 50% до 99% в зависимости от их назначения.

Кроме этого компонента в стеклянном волокне присутствуют Al2O3, CaO и некоторые другие соединения.

От химического состава зависят физические характеристики стекловолокна и свойства изделий из него. В частности — щелочестойкость, которая определяется содержанием диоксида циркония (ZrO2) в стекле. Чем больше этого компонента, тем более щелочестойким является стекловолокно.

Плотность

Этот параметр непосредственно у стеклянных нитей подобен плотности стекла, из которого они изготовлены и равен 2500 кг/м³.

Плотность изделий из стеклянных волокон может колебаться в широких пределах. У стекловаты она минимальна, а такие продукты из этого материала, как листы, ткань и т. д. имеют максимальную плотность.

Для комбинированных материалов, таких как стеклопластик, плотность рассчитывается на основании плотности исходных материалов.

Температура плавления

Плавится любое стекловолокно при температуре от 1200 до 1400 °C.

Температура плавления зависит от состава стекла, из которого изготовлены волокна.

Чем больше в составе кварцевого песка, тем выше температура плавления. Поэтому для качественной переработки стеклянных отходов в стекловолокно необходимо точно знать его химический состав.

Стойкость к возгоранию

Стекло — полностью негорючий материал, поэтому изделия из него не способны поддерживать горение.

Все это в полной мере относится и к стеклянным волокнам – стекловолоконная продукция является пожаробезопасным материалом. Правда, некоторые композитные материалы, изготовленные на основе стекловолокна, могут возгораться при определенных условиях.

Таким образом, горит стекловолокно или нет, зависит от марки и компонентов, входящих в их состав.

Химические и физические характеристики стекловолокна определили виды продукции, которые можно изготовить из этого материала.

Марки

Перечень марок стекловолокна с соответствующими им характеристиками вы можете увидеть в таблице:

Фото 10

Ниже мы рассмотрим основные типы изделий из стеклянных волокон, наиболее популярные на современном рынке.

Стекловолокно применение

Сегодня без изделий из стекловолокна не обходятся строительные, ремонтные и отделочные работы. Этот материал применяется также и при проведении дорожных работ. Широкое использование он получил в авто- и судостроении, в сфере производства товаров бытового, спортивного и медицинского назначения. А из-за превосходных диэлектрических свойств давно применяется в энергетической отрасли в качестве изоляционных материалов.

Применение стекловолокна в строительстве

Очень много продуктов из стекловолокна используется в строительстве. Одним из них является стеклопластиковая арматура, которая разрабатывалась как замена для стальной. Дело в том, что долгое время сталь являлась практически единственным материалом, у которого имелись необходимые для армирующего элемента свойства — исключительная прочность и долговечность. Альтернативы не было, а значит, приходилось мириться и с недостатками стали. Когда развитие технологий сделало возможным получение материалов с ранее недоступными свойствами, изменились и стандарты производства стройматериалов, в том числе и армирующих. На смену стальной пришла композитная стеклопластиковая арматура.

  • Она обладает прочностью и надежностью стали, но в то же время в несколько раз легче ее, не подвержена коррозии, устойчива к неблагоприятным воздействиям влаги, имеет низкую теплопроводность, не проводит электричество и полностью химически инертна. Все эти замечательные качества обеспечивают композиту самое широкое использование в самых различных случаях — для армирования фундаментов, бетонных конструкций и дорожного или авиационного полотна, крепления теплоизоляции, в виде армирующих сеток для несущего или облицовочного слоя при строительстве или ремонте зданий, для возведения осветительных опор, ограждений, канализационных и мелиоративных конструкций.
  • Еще одним изделием из стекловолокна является стеклофибра, которую добавляют в бетонный раствор в качестве скрепляющего элемента. Как известно, обычная бетонная смесь в процессе застывания подвержена усадке, в результате которой образуются микротрещины. Что является нежелательным, так как негативно влияет на качество бетона и его долговечность. Добавление в раствор фибры меняет дело. Когда свежий бетон начинает застывать, внутри раствора химические и физические процессы могут приводить к образованию дефектов. Волокна стекловолокна способны остановить прорастание микротрещин на ранних стадиях его твердения. В некоторых случаях такой состав позволяет обойтись без дополнительного армирования. Стеклофибру применяют для создания газобетонов, пенобетонов и ячеистых бетонов, в сухих смесях и штукатурках, стяжках и стеновых панелей для зданий и т. д. Полученная продукция выходит лучшего качества и с более высокими характеристиками.
  • Стекловолокно — прекрасный утеплитель. Чем хорошо пользуются в строительстве для теплоизоляции различных ненагруженных конструкций, внутри и снаружи зданий. Для наружных работ применяется в системе вентилируемых фасадов как самостоятельный элемент утепления или в составе сэндвич-панелей. Может использоваться как в рулонах, так и в матах. Внутренние работы включают в себя утепление кровли, чердачного помещения, теплоизоляцию стен и потолков, внутренних перегородок обычных и каркасных зданий. Стекловолоконными изделиями утепляют также различные подходящие к зданиям коммуникации — трубопроводы, системы канализации и вентиляции, отопления. Для этих целей в основном используют иглопробивные материалы. Обладающими паро- и теплоотражающими качествами фольгированными матами изолируют холодильные камеры, сауны и подобные помещения.
  • Ремонт и отделка помещений также не обходится без изделий из стекловолокна. Их главное назначение — создание армирующего слоя на поверхности при штукатурных работах. Таким образом, реставрация проходит успешно. Множество мелких трещин или одну крупную можно закрыть с помощью шпаклевки стекловолокна.
  • Кроме этого ее используют как армирующий элемент перед заливкой наливного пола, укладкой гидроизоляции, для укрепления соединений листов гипсокартона. Для более тонкой отделки поверхностей под покраску, при работе с гипсокартоном, для предупреждения появления мелких изъянов и получения идеальной картины в целом используется более изящный вариант армирующего материала — нетканый стеклохолст. Финишная отделка с применением стеклохолста дает всегда отличные результаты, качественное однородное покрытие без дефектов и изъянов. К тому же это еще и гарантия того, что идеальное состояние поверхности в ближайшее время не будет нарушено.
  • Еще одним отделочным материалом из стекловолокна являются стеклообои — прекрасное декоративное покрытие, но требующее большого количества краски из-за высоких впитывающих свойств. В отличие от обычных обоев, они выносливы, выдерживают механические нагрузки и воздействия химических сред.

Применение стекловолокна в дорожном и промышленном строительстве

  • Широкое распространение применение стекловолокна получило в промышленном и дорожном строительстве. Здесь оно незаменимо как скрепляющий компонент. Дорожное полотно с уложенной стеклопластиковой арматурой, при условии соблюдения технологии строительства, не растрескивается и не продавливается при нагрузках. Наличие в слоях покрытия дорог стеклосетки гарантирует увеличение производительности и срока их эксплуатации, снижает толщину асфальтного покрытия, предупреждает образование и распространение трещин и выбоин, увеличивает проходимость и долговечность дорог, позволяет увеличить сроки между ремонтами.
  • В гидротехническом строительстве без укрепляющих стекловолоконных сеток не обходится возведение плотин, набережных, мостов, подпорных стенок, ливневых коллекторов. Значительная часть канализационных емкостей (отстойников, фильтров, септиков) выполнена все из того же стеклопластика.

  • Из него изготавливаются сидения, устанавливаемые на стадионах, в аэропортах, авто- и ж/д вокзалах; оборудование остановок, бассейнов. Везде, где предусматривается большое скопление людей.

Применение стекловолокна в авто- и судостроение

  • Стеклоткань и композитный стеклопластик, благодаря малому весу и исключительной прочности, способности хорошо поддаваться механической обработке и окрашиванию, поэтому востребованы в автопромышленности и автоспорте. Из этих материалов производят различные части кузова — двери, крыши, крышки багажников, капоты. А также бампера, спойлеры, обвесы, рейлинги и внутренние детали салона. Стекловолокно применяют для придания дополнительной жесткости шинам, и в глушителях как звукоизоляционный материал.
  • В тюнинговых ателье изделия из стекловолокна используются для создания отделочных элементов благодаря способности легко копировать форму заготовки для воспроизведения необходимой детали. Простота в обработке, небольшая толщина, гибкость и пластичность материала позволяют изготавливать из него изделия разной степени сложности и формы.
  • Те же замечательные качества стекловолокна обеспечивают его применение в промышленном масштабе и в судостроительной отрасли. Корпуса моторных и весельных лодок, гоночных и крейсерных яхт, рыболовецких судов малой тоннажности, скутеров и катеров сегодня частично или полностью выполнены из этого материала. Стеклопластиковыми могут быть и другие части суден.

Другие способы применения стекловолокна

В зависимости от толщины стекловолокна из него производят различные товары народного потребления и другие изделия:

  • сантехнические детали — биотуалеты, септики, душевые кабинки, чаши бассейнов;
  • товары для спорта и отдыха — весла для гребли, лыжные палки, удочки и т. д.;
  • ящики и контейнеры для бытовых отходов твердого типа;
  • медицинские изделия, используемые в стоматологии — пломбы и несъемные протезы, ленты для шинирования зубов ;
  • медицинские изделия, используемым в ортопедии — протезы, костыли, трости;
  • разнообразные виды трубок бытового назначения — антенны, держатели, флагштоки;
  • электротехнические изделия — индикаторы, предохранители, заземлители.

Это далеко не полный список перечислений всех мест, где может быть использованы изделия из стекловолокна. С каждым днем область их применения все больше расширяется, охватывая все новые и новые сферы нашей деятельности.

Широкое распространение и применение стекловолокна и изделий на его основе стало возможным благодаря достижениям современного производства, высоким технологиям в области химпромышленности, в частности полимеров и композитных материалов, и высоким требованиям к качеству конечного продукта. Стекловолокно — уникальный продукт, который как нельзя лучше отвечает реалиям времени и требуемым характеристикам и свойствам, присущим современным материалам. Поэтому такое его разностороннее применение совсем неудивительно.

Виды стеклопластиков на основе их свойств

 

Как уже говорилось выше, существует много видов стеклопластика в зависимости от состава. Основные типы стекловолокна будут перечислены ниже:

1. A-Стекловолокно (A-glass)

A-glass также известен как щелочное стекло или содово-известковое стекло. Это наиболее часто доступный тип стекловолокна. Около 90% стекла — это щелочное стекло. Это самый распространенный тип, который используется при производстве стеклянной тары, такой как банки и бутылки для пищевых продуктов и напитков, а также оконные стекла. Иногда, формы для выпечки, которые вы используете, сделаны из закаленного натриево-известкового стекла.

Натриево-известковое стекло химически устойчиво, относительно недорого, чрезвычайно обрабатываемо и довольно твердо. Его можно многократно переплавлять и размягчать, поэтому стеклопластик типа А-стекло является идеальным типом стекла для вторичной переработки .

Сырье, используемое для изготовления а-стекловолокна

Основные материалы, которые используются для изготовления а-стекла, включают в себя:

  • Сода (карбонат натрия)
  • Лайм
  • Кремнезем (диоксид кремния)
  • Доломит
  • Глинозем (оксид алюминия)
  • Мелющие агенты, такие как хлорид натрия и сульфат натрия

2. C-Стекловолокно

C-стекло или химическое стекло показывает самую высокую устойчивость к химическому воздействию. Он обеспечивает структурное равновесие в агрессивных средах. Это свойство обусловлено наличием большого количества боросиликата кальция. Значение рН химических веществ, которые используются при изготовлении стеклопластика типа А-стекло, обеспечивает достаточно высокую стойкость стеклопластика этого типа независимо от окружающей среды (кислой или щелочной).

С-стекло используется в наружном слое ламината в виде поверхностной ткани для труб и резервуаров, которые удерживают воду и химикаты.

3. D-Стекловолокно

D-стекло-это тип стекловолокна, который известен своей низкой диэлектрической проницаемостью, что связано с присутствием в его составе триоксида Бора. Благодаря этой характеристике D-glass является идеальным типом стекловолокна для использования в оптических кабелях. D-стекло также содержит боросиликат, который придает этому типу стекловолокна чрезвычайно низкий коэффициент теплового расширения. Благодаря этим свойствам D-стекло часто используется в электроприборах и кухонной посуде.

4. E-Стекловолокно

Электронное стекло более широко известно как электрическое стекло. Это легкий композитный материал, который используется в аэрокосмической,  морской и других видах промышленности. Стеклоткань E-glass — это отраслевой стандарт, обеспечивающий баланс между производительностью и стоимостью, что делает его наиболее часто используемым.

Сырье, используемое для производства электронного стекловолокна

Е-стекло-это щелочное стекло. Сырьем, которое используется при производстве стеклопластика E-glass, являются:

  • Кремнезем (двуокись кремния)
  • Глинозем (оксид алюминия)
  • Оксид кальция
  • Оксид магния
  • Триоксид Бора
  • Оксид натрия
  • Оксид калия

Свойства волокна е-стекла

Ключевыми свойствами, которые делают E-glass популярным типом стекловолокна, являются:

  • Низкая стоимость
  • Высокая прочность
  • Низкая плотность
  • Высокая жесткость
  • Устойчивость к нагреву
  • Невоспламеняемость
  • Хорошая устойчивость к химическим веществам
  • Относительно нечувствительный к влаге
  • Хорошая электрическая изоляция
  • Способность поддерживать прочность в различных условиях

Применения волокна е-стекла

E-стекло изначально использовалось электрической отрасли, но сейчас оно используется в во многих отраслях. Это привело к производству стеклопластика в сочетании с термореактивными смолами. Листы и панели из стеклопластика достаточно широко используются практически во всех промышленных зонах. Он защищает структурную целостность от любого механического воздействия.

5. Стекловолокно Advantex

Стекло Advantex -это новый промышленный стандарт, который сочетает в себе механические и электрические свойства электронного стекла с кислотной коррозионной стойкостью стекловолокна типа ECR. Этот тип стеклопластика соответствует стандартам кислотной коррозионной стойкости стекла ECR по стоимости, которая аналогична E-glass. Стеклоткань Advantex имеет более высокую температуру плавления, что дает возможность ее использования при больших тепловых колебаниях.

Стекловолокно Advantex содержит оксид кальция в больших количествах, как и стекловолокно ECR. Он используется в тех случаях, когда конструкции более подвержены коррозии. Кроме того, этот тип стекловолокна широко используется в нефтяной, газовой и горнодобывающей промышленности, на электростанциях и в судостроении (канализационные системы и системы канализации).

6. стекловолокно ECR

Стекловолокно ECR также называют электронным стекловолокном. Он обладает высокой механической прочностью, хорошей гидроизоляцией, а также устойчивостью к щелочной и кислотной коррозии. Самое большое преимущество ECR glass перед другими видами стекловолокна заключается в том, что его способ изготовления является экологически чистым.

Стекло ECR имеет более высокую термостойкость, лучшие механические свойства, более низкую электрическую утечку, лучшую гидроизоляцию и более высокое поверхностное сопротивление по сравнению с электронным стеклом. ECR-волокно используется при изготовлении прозрачных стеклопластиковых панелей. Он изготовлен из алюмосиликатов кальция, которые обеспечивают его прочность, стойкость к кислотной коррозии и электропроводность, что делает его пригодным для применения там, где эти свойства необходимы.

Срок службы ECR-стекла более длительный. Это более прочный тип стекловолокна из-за его превосходной стойкости к воде, кислоте и щелочам.

7. AR-Стекловолокно

AR-стекло или щелочестойкое стекло было разработано специально для использования в бетоне. Его состав был разработан специально с цирконием на оптимальном уровне. Добавление циркония-это то, что делает этот тип стекловолокна пригодным для использования в бетоне.

AR-стекло предотвращает растрескивание бетона, обеспечивая прочность и гибкость. AR-стекло трудно растворить в воде, и на него не влияют изменения рН. Кроме того, его можно легко добавлять в бетонные и стальные смеси.

AR-стекловолокно используется в различных материалах для армирования бетона и строительных растворов. Он обладает высоким модулем упругости и прочностью на растяжение. Более того, в отличие от Стали, оно не ржавеет.

8. R-стекло, S-стекло или T-Стекловолокно

R-Glass, S-Glass и T-glass являются торговыми названиями для одного и того же типа стекловолокна. Они имеют большую прочность на растяжение и модуль по сравнению со волокнами е-стекла. Смачивающие свойства и кислотная прочность этого типа стекловолокна также выше. Эти свойства получены путем уменьшения диаметра нити.

Этот тип стекловолокна разрабатывается для оборонной и аэрокосмической промышленности. Он также используется при создании жесткой баллистической брони. Объем производства этого вида стеклопластика ниже, а значит, и его себестоимость относительно выше. Объем производства невелик, поскольку этот тип стеклопластика является высокоэффективным и используется только в определенных отраслях промышленности.

9. S2-Стекловолокно

S2-стекловолокно-это самый высокоэффективный тип стекловолокна, который доступен. S2-стекло имеет более высокий уровень кремнезема в своем составе по сравнению с другими видами стекловолокна. В результате он обладает улучшенными свойствами, лучшими весовыми характеристиками, высокой термостойкостью, высокой прочностью на сжатие и улучшенной ударопрочностью. Прежде всего, S2-glass более экономичен.

Прочность на растяжение S2-стекла примерно на 85% больше, чем у обычного стекловолокна. Это обеспечивает стабильную высокую производительность и долговечность. Он обладает лучшей прочностью волокон и модулем сопротивления, что обеспечивает улучшенные ударные характеристики готовых деталей, а также более высокую устойчивость к повреждениям и долговечность композита. Он обеспечивает примерно на 25% большую линейную упругую Жесткость и демонстрирует отличную устойчивость к повреждениям.

S2-стекловолокно в основном используется в композитной и текстильной промышленности благодаря своим физическим свойствам, которые лучше, чем у обычных видов стекловолокна.

10. М-Стекловолокно

М-стекловолокно имеет в своем составе бериллий. Этот элемент придает стеклопластику дополнительную эластичность.

11. Z-Стекловолокно

Z-стекло применяется во многих отраслях промышленности, в том числе в арматурной промышленности бетона, в которой оно используется для создания изделий, которые выглядят прозрачными. Он также используется для создания волокон 3D-принтера. С высоким сопротивлением механических, ультрафиолетовых, кислоты, щелочи, соли, царапин, износостойкости и температуры, волокно Z-стекла один из самых прочных и самых надежных типов стеклоткани.

Процесс производства стекловолокна

Три основных метода изготовления стекловолокна — это открытое формование, закрытое формование и центробежное формование. При открытом формовании стекловолокна слой гелевого покрытия наносится и отверждается в цельной форме или конструкции. После наслоения в форму стекловолокну и распыленной смоле дают затвердеть. Открытое формование выделяет больше выбросов, чем два других процесса.

При закрытом формовании исходное гелевое покрытие наносится в форме, состоящей из двух частей. Волокна в виде рубленых волокон или ламинированных листов распыляются или помещаются в охватывающую часть формы поверх гелевого покрытия. Деталь затвердевает после герметизации в форме с помощью вакуума, и катализированная смола впрыскивается в форму под давлением.

При центробежном формовании гелькоут наносится на стороны вращающейся цилиндрической формы. Слой за слоем, катализированные смолы, насыщенные короткими волокнами, распыляются в форму до достижения желаемой толщины.

Центробежное формование используется для формования цилиндрических изделий, таких как трубы и резервуары. Во всех процессах конечные продукты затем извлекаются из формы и обрезаются. Гофрированное стекловолокно, пожалуй, является наиболее широко используемым сегодня продуктом из стекловолокна.

Оно прочное, может быть однотонным (часто зеленым) или прозрачным для пропускания света в здания. Он в основном используется в строительстве для изготовления сайдинга или кровли, а также часто используется для строительства теплиц и навесов.

 

Гофрированное стекловолокно обычно состоит из двух склеенных между собой слоев. Внешний слой представляет собой твердую, устойчивую к атмосферным воздействиям поверхность из смолы. Центробежное формование используется для формования цилиндрических изделий, таких как трубы и резервуары.

Во всех процессах конечные продукты затем извлекаются из формы и обрезаются. Гофрированное стекловолокно, пожалуй, является наиболее широко используемым сегодня продуктом из стекловолокна.

Преимущества стекловолокна

Стекловолокно часто превосходит многие другие материалы, особенно алюминий, который является основной альтернативой стекловолокну. Пултрузионные (Пултру́зия — технология изготовления высоконаполненных волокном композиционных деталей с постоянной поперечной структурой) профили из стекловолокна имеют ряд преимуществ по сравнению с аналогичными штампованными алюминиевыми профилями.

Пултрузионное стекловолокно обладает превосходной устойчивостью к широкому спектру химикатов. Профили из стекловолокна составляют около 70% веса алюминиевых профилей, но имеют такую ​​же плотность. Пултрузионное стекловолокно не является проводящим с высокой диэлектрической способностью, в то время как алюминий является проводником.

Стекловолокно — гораздо лучший изолятор, чем алюминий, поскольку он имеет гораздо более низкую теплопроводность. Пигмент, добавленный к смолам стекловолокна, может обеспечить цвет всей детали, в то время как алюминий требует предварительной отделки, анодного покрытия или окраски.

Стекловолокно прозрачно для радиоволн и передач EMI / RFI и часто используется для корпусов и опор радаров и антенн. Алюминий обладает высокой отражающей способностью, что делает его непригодным для таких приложений.

Формы из пултрузионного стекловолокна могут быть легко изготовлены в полевых условиях с помощью обычных столярных инструментов и не требуют горелок или сварки.

Наконец, стекломат в форме пултрузионного стекловолокна равномерно распределяет ударную нагрузку, в то время как алюминий легко деформируется.

Армированный стекловолокном пластик — отличный строительный материал для широкого спектра изделий.

Пластмассы, армированные алюминием и стекловолокном, обладают одинаковой плотностью и универсальностью, но с некоторыми ключевыми отличиями. Различные области применения могут сделать алюминий или стекловолокно более желательными.

  • Легче — по сравнению с его основной альтернативой, алюминием, стекловолокно, как правило, составляет около 70% веса при аналогичной плотности и прочности. Это соотношение также выгодно отличается от любого количества других пластиков, композитов и металлов.
  • Неотражающий — хотя не во всех областях применения, во многих случаях неотражающие свойства стекловолокна для света, радио и других волн делают его идеальным материалом.
  • Равномерное распределение силы — одно из уникальных свойств стекловолокна заключается в том, как оно распределяет силу. Хотя это может быть идеальным не для всех приложений, во многих случаях это очень ценно.
  • Простота изготовления — по сравнению с процессом изготовления алюминия и других сопоставимых материалов, стекловолокно чрезвычайно легко изготовить и настроить в соответствии с вашими потребностями. Это включает пигментацию, вторичные покрытия и многие другие соображения.
  • Превосходная изоляция — Уникальные термические свойства стекловолокна делают его отличным решением для изоляции в широком диапазоне применений. Он остается основным изоляционным материалом в строительстве, HVAC и подобных отраслях.

Физико-химические свойства неорганических волокон и материалов на их основе.

Механические свойства. Стекловолокно значительно превосходит по механической прочности исходное (массивное) стекло и незначительно отличается от него по некоторым физическим параметрам.

Механические свойства стеклянных волокон зависят от химического состава стекла, метода производства, окружающей среды и температуры. Метод производства оказывает большое влияние на прочность стеклянных волокон: высокой прочностью обладают волокна, вытянутые с большой скоростью из расплавленного стекла (вытягивание из фильер), наименьшей прочностью – волокна, полученные штабиковым способом и раздувом. При формовании волокна из фильер образуется меньше поверхностных дефектов и трещин, чем обусловливаются их лучшие механические свойства, главным образом прочность.

Прочность при растяжении стекловолокна зависит от его состава и диаметра

Наибольшей прочностью обладают непрерывные волокна из кварцевого и бесщелочного магнийалюмосиликатного стекла. Повышенное содержание щелочей в стекле резко снижает прочность стеклянных волокон. Кристаллизация стекла и присутствие в стекломассе мелких газовых включений понижает прочность стеклянного волокна на 25-30%.

Максимальная прочность стеклянных и кварцевых волокон, испытанных в среде жидкого азота, приближается к расчетной теоретической прочности стекла и плавленого кварца.

В зависимости от диаметра и состава стекла техническая прочность стеклянных волокон при их формировании современными промышленными методами составляет 25-30 % теоретической прочности стекла.

Модуль Юнга стеклянных волокон составляет 6-11 ГПа и выше. Разрушающее напряжение при изгибе и кручении повышается с уменьшением диаметра волокон.

Изделия из стекловолокна плохо работают при многократном изгибе и истирании, однако, стойкости к изгибу и истиранию повышаются после пропитки лаками и смолами. Склеивание волокон в нити повышает прочность нити на 20-25 %, а пропитка стекловолокнистых материалов лаками – на 80-100 %.В сухом воздухе прочность стеклянных волокон резко повышается. Смачивание стеклянных волокон и изделий из них неполярной углеводородной жидкостью аналогично действию сухого воздуха и дает наибольшее значение прочности. Значительное (до 50-60 %) понижение прочности стеклянных волокон и изделий из них происходит при адсорбции ими воды и водных растворов поверхностно-активных веществ. Это объясняется тем, что молекулы веществ, адсорбируемых на стеклянных волокнах, способствуют образованию трещин в слабых местах поверхностного слоя.

При погружении химостойких стекловолокнистых материалов в воду прочность их снижается, но после высушивания полностью восстанавливается. Изделия из стеклянного волокна натрийкальцийсиликатного состава, содержащие более 15 % (мас.) оксидов щелочных металлов, после пребывания во влажном воздухе или в воде снижают прочность необратимо в связи с интенсивным выщелачиванием и разрушением. При длительном действии деформирующего усилия у стеклянных волокон развивается упругое последствие, которое зависит от химического состава стекла и относительной влажности воздуха. Влага снижает также сопротивления стеклянных волокон изгибу и трению.

При нагревании стеклянной ткани до 250-300°С прочность ее сохраняется, в то время как волокна органического состава при этой температуре полностью разрушаются.

При низких и высоких температурах устраняется адсорбционное воздействие влаги воздуха на стеклянные волокна, что приводит к повышению их прочности. Однако после термической обработки (нагрев до различных температур и последующее охлаждение) прочность стеклянных волокон и тканей снижается на 50-70 %.

Состав стекла оказывает значительное влияние на прочность стеклянных волокон, подвергнутых термообработке. Волокна из натрийкальцийсиликатного и боратного стекол теряют свою прочность при термообработке, начиная уже с 100-200°С, волокна из кварцевого, кремнеземного и каолинового стекла теряют прочность на 50 % при нагреве до 1000°С и последующем охлаждении.

Прочность волокон из бесщелочного стекла значительно снижается при 300°С; прочность кварцевых волокон при этой температуре практически не изменяется.

После нагрева и охлаждения стеклянных волокон наблюдается небольшое повышение их плотности и показателя преломления.

Нагревостойкость. Стеклянное волокно обладает высокой нагревостойкостью которая зависит от химического состава стекла Температурная область применения стеклянных волокон натрийкальцийсиликатного состава ограничена температурами 450-500°С, при более высоких температурах начинается их спекание. Для бесщелочных волокон нагревостойкость выше на 200-300°С и составляет 600-700°С.

Гигроскопичность отдельных стеклянных волокон около 0,2 % (мас.). Поглощение влаги стеклянной тканью значительно выше, так как влага адсорбируется зазорами между волокнами и замасливателем. Гигроскопичность ткани зависит от характера переплетения нитей и химического состава стекла, например ткани из волокна натрийкальцийсиликатного состава обладают гигроскопичностью до 3-4 %.

Химистойкость теклянных волокон не зависит от их диаметра, но абсолютная растворимость тонких волокон выше растворимости толстых вследствие большего отношения их поверхности к массе. Поэтому при воздействии агрессивных реагентов волокна разрушаются быстрее, чем массивное стекло.

Прочность стеклянных волокон в различных агрессивных средах (горячая вода, водяной пар высокого давления, кислоты, щелочи) зависит от химического состава стекла. Наибольшей прочностью и высокой стойкостью к горячей воде и пару обладают волокна из бесщелочного алюмоборосиликатного и магнийалюмосиликатного стекла. По гидролитической классификации этот вид стекла относится к «стеклам, не изменяемым водой».

Материалы из стеклянного волокна, содержащего в своем составе щелочи, значительно теряют прочность при многократной обработке горячей водой или водяным паром даже нормального давления. В этом случае имеет место интенсивное выщелачивание, приводящее к полному распаду структуры стекла.

При длительном воздействии водяного пара различного давления резко снижается прочность материалов и из волокна бесщелочного алюмоборосиликатного стекла. Наиболее стойкими в этих условиях являются стеклянные ткани из бесщелочного безборного стекла.

Стеклянные ткани и волокна из бесщелочного стекла нестойки к воздействию кислот. При обработке кислотой волокон из бесщелочного стекла все компоненты его растворяются и остается лишь малопрочный кремнекислородный скелет.

Высокой стойкостью к воде, пару высокого давления и различным кислотам (кроме плавиковой) обладают волокнистые материалы кварцевого, а также кремнеземного и каолинового состава.

Вредна ли стекловата для здоровья

Стекловата вредна для здоровья: она раздражает глаза, кожу и органы дыхания. Потенциальные симптомы включают раздражение глаз, кожи, носа, горла, появление одышки, затрудненное дыхание, боль в горле, охриплость и кашель.

вред стекловаты для человека подтверждают научные и медицинские исследования.

Срок хранения стекловаты довольно большой, но со временем она теряет свои эластичные свойства, становится хрупкой и при механическом воздействии или монтаже очень сильно распространяется по воздуху в виде стеклянной пыли.

Все волокна из стекловолокна, обычно используемые для тепловой и акустической изоляции, были реклассифицированы Международным агентством по исследованию рака в октябре 2001 года как не классифицируемые в отношении канцерогенности для людей. Проще говоря, данное агентство не может сказать о последствиях воздействия на человека вредных факторов стекловаты.

Утеплитель из стекловолокна устойчив к плесени, не требует особых условий хранения. Если плесень находится внутри или на стекловолокне, то это вызвано только внешним воздействием, связующие вещества часто являются органическими и более гигроскопичными, чем стекловата. В тестах стеклянная вата оказалась очень устойчивой к росту плесени внутри волокна. Рост плесневых культур внутри самого материала возможен только при очень высокой относительной влажности (96% и выше).